Zero-Sum Squares in Bounded Discrepancy $\{-1,1\}$-Matrices

نویسندگان

چکیده

For $n\geqslant 5$, we prove that every $n\times n$ matrix $\mathcal{M}=(a_{i,j})$ with entries in $\{-1,1\}$ and absolute discrepancy $\lvert\mathrm{disc}(\mathcal{M})\rvert=\lvert\sum a_{i,j}\rvert\leqslant contains a zero-sum square except for the split matrices (up to symmetries). Here, is $2\times 2$ sub-matrix of $\mathcal{M}$ $a_{i,j}, a_{i+s,s}, a_{i,j+s}, a_{i+s,j+s}$ some $s\geqslant 1$, all above diagonal equal $-1$ remaining $1$. In particular, show 5$ square.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Zero-sum Square Matrices

Let A be a matrix over the integers, and let p be a positive integer. A submatrix B of A is zero-sum mod p if the sum of each row of B and the sum of each column of B is a multiple of p. Let M(p, k) denote the least integer m for which every square matrix of order at least m has a square submatrix of order k which is zero-sum mod p. In this paper we supply upper and lower bounds for M(p, k). In...

متن کامل

Eigenvalues of Hermitian Matrices with Positive Sum of Bounded Rank

We give a minimal list of inequalities characterizing the possible eigenvalues of a set of Hermitian matrices with positive semidefinite sum of bounded rank. This answers a question of A. Barvinok.

متن کامل

A Coding Theory Bound and Zero-Sum Square Matrices

For a code C = C(n,M) the level k code of C, denoted Ck, is the set of all vectors resulting from a linear combination of precisely k distinct codewords of C. We prove that if k is any positive integer divisible by 8, and n = γk, M = βk ≥ 2k then there is a codeword in Ck whose weight is either 0 or at most n/2− n( 1 8γ − 6 (4β−2)2 ) + 1. In particular, if γ < (4β − 2) /48 then there is a codew...

متن کامل

Diagonal forms for incidence matrices and zero-sum Ramsey theory

We consider integer matrices Nt whose rows are indexed by the t-subsets of an n-set and whose columns are all distinct images of a particular column under the symmetric group Sn. Examples include matrices in the association algebras of the Johnson schemes. Three related problems are addressed. What is the Smith normal form (or a diagonal form) for Nt and the rank of Nt over a field of character...

متن کامل

Week 11 : Zero - Sum Games , Learning Theory and Boosting

We show how the general algorithm presented in the last lecture can be used to approximately solve zero-sum games. Let A be a payoff matrix of a finite 2-player zero-sum game, with n rows. When the row player plays strategy i and the column player plays strategy j, then the payoff to the column player is A(i, j). We assume A(i, j) ∈ [0, 1]. If the row player chooses strategy i from a distributi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Electronic Journal of Combinatorics

سال: 2021

ISSN: ['1077-8926', '1097-1440']

DOI: https://doi.org/10.37236/9617